MARVEL

Loading...

Sabtu, 27 April 2013

ELIMINASI GAUSS JORDAN



Karl Friedich Gauss (1977-1855) adalah seorang ahli matematika dan ilmuwan dari Jerman. Gauss yang kadang-kadang dijuluki “pangeran ahli matematika”. Disejajarkan dengan Isaac Newton dan Archimedes sebagai salah satu dari tiga ahli matematika yang terbesar yang pernah ada.
Pada suatu hari, saat ia bahkan belum berusia tiga tahun, melalui cara dramatis orang tuanya mulai menyadari kejeniusan Gauss. Ketika itu ayahnya tengah menyiapkan gaji mingguan untuk para buruh bawahannya, dan Gauss memperhatikan dengan diam-diam dari pojok ruangan. Setelah perhitungan yang panjang dan membosankan. Gauss tiba-tiba member tahu ayahnya bahwa terdapat kesalahan dalam perhitungannya dan memberikan jawaban yang benar, yang diperoleh hanya dengan memikirkannya (tanpa menulisnya). Yang mengherankan orang tuanya adalah setelah diperiksa ternyata perhitungannya Gauss benar.
Dalam desertasi doktoralnya Gauss memberikan bukti lengkap pertama teori-teori dasar aljabar yang menyatakan bahwa setiap persamaan polynomial memiliki solusi sebanyak pangkatnya. Ia pernah menyelesaikan masalah yang membingungkan Euclid, menggambarkan polygon 17 sisi di dalam lingkaran dengan menggunakan jangka dan kompas, dan pada tahun 1801, mempublikasikan karya terbesarnya, Disquisitiones Arithmeticae”, yang dipandang banyak orang sebagai salah satu prestasi paling berlian dalam matematika. Dalam makalah itu Gauss melakukan sistematisasi studi dari teori bilangan (sifat-sifatbilangan bulat atau integer) dan merumuskan konsep dasar dari hal tersebut.
Gauss juga menemukan kurva Gaussian atau kurva berbentuk lonceng yang merupakan dasar teori probabilitas, memberikan interpretasi

Wilhelm Jordan (1842-1899) adalah seorang insinyur Jerman yang ahli dalam bidang geodesi. Sumbangannya untuk penyelesaian sistem linear dalam buku populernya, Handbuch de Vermessungskunde (Buku panduan Geodesi) pada tahun 1988.
Dalam aljabar linear, eliminasi Gauss-Jordan adalah versi dari eliminasi Gauss. Pada metode eliminasi Gauus-Jordan kita membuat nol elemen-elemen di bawah maupun di atas diagonal utama suatu matriks. Hasilnya adalah matriks tereduksi yang berupa matriks diagonal satuan (Semua elemen pada diagonal utama bernilai 1, elemen-elemen lainnya nol).
Metode eliminasi Gauss-Jordan kurang efisien untuk menyelesaikan sebuah SPL, tetapi lebih efisien daripada eliminasi Gauss jika kita ingin menyelesaikan SPL dengan matriks koefisien sama.

Contoh :
x + 2y + 3z = 3
2x + 3y + 2z = 3
2x + y + 2z = 5

Tentukan Nilai x, y dan z

Bentuk persamaan tersebut ke dalam matriks:


 

Tidak ada komentar:

Poskan Komentar